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Fundamentals of the nonlinear theory of photorefractive subharmonics
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We formulate the fundamentals of the nonlinear theory of low-frequency space-charge waves in semi-
insulating photorefractive crystals. This includes an analysis of dispersion relations for the waves, and of their
parametric excitation by a running light pattern, a description of various stationary states~split and unsplit
subharmonics! beyond the threshold of the parametric instability, and a study of the stability of those nonlinear
steady states against small perturbations. Nonlinear eigenfrequency and mutual frequency shifts for strong
waves and renormalization of the coupling coefficients for weak waves are important elements of the theory.
An investigation of the stability of the subharmonics also incorporates their phase relations as well as certain
special features of space-charge waves. One of the consequences of the theory is the modulational instability
of the main subharmonic, characterized by doubling of the period of the primary light pattern. Finally we
discuss further development and applications of the theory.@S1063-651X~97!10604-3#

PACS number~s!: 42.40.Pa, 42.65.Hw, 42.70.Nq
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I. INTRODUCTION

The problem of how to describe the equilibrium state o
physical system governed by nonlinear evolutional equati
is of a very general nature. It arises in hydrodynamics@1,2#,
plasma physics@3,4#, nonlinear optics@5,6#, and in many
other fields of physics. An analysis of the stability of th
stationary solutions often reveals the details of the transi
from a deterministic~laminar! behavior of a physical system
to a chaotic~turbulent! one with increasing strength of th
nonlinearity@1,7#.

Investigations of the so-called weakly nonlinear wave
teractions figure prominently in the above subject@4,8,9#.
The existence of a small physical parameter—the ratio of

dampinggkW of the wave with wave vectorkW to its frequency,
vkW—enables one to advance greatly in the description
understanding of nonlinear wave phenomena even with
numerical simulations, if the wave amplitudes are su
ciently small. The simple idea that the waves remain qu
monocromatic and quasiplane, so that the concept of r
nance~linear or nonlinear! still holds true, lies at the heart o
such studies.

The scope of weakly nonlinear wave phenomena is q
large: among them are dynamic effects with narrow wa
packets and kinetic effects involving wide wave spectra. T
latter case is known as ‘‘weak wave turbulence’’@4#. Sub-
stantial progress in the field of weakly nonlinear wave p
nomena has been achieved in plasma physics@8# and in fer-
romagnetism@9#.

The experience of numerous studies shows that the be
ior of waves above the threshold of their nonlinear excitat
is highly sensitive to the special features of the physical s
tem: to the method of pumping, to the dispersion lawvkW , to
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the dependence of the nonlinear coupling coefficients on
wave vector, etc. A universal description of the abov
threshold behavior of nonlinear waves is hardly possible

In the present paper we are dealing with the abo
threshold regimes and their stability as applied to spa
charge waves in photosensitive dielectrics. Although su
waves were predicted more than 20 years ago@10#, real in-
terest in them arose quite recently during studies of the n
linear photorefractive phenomena in crystals of the sillen
family, Bi12SiO20, Bi12TiO20, and Bi12GeO20.

A brief history of space-charge waves is as follows. It w
found in 1988@11# that the space-charge fieldEsc(xW ) created
in a Bi12SiO20 crystal by a moving light pattern under ce
tain conditions looses the periodicity of the external exp
sure. The Fourier spectrum ofEsc(xW ), apart from the funda-
mental spatial frequency of the interference patternKW , and
the higher harmonics 2KW , 3KW , . . . , also included the frac
tional frequenciesKW /2, KW /3, andKW /4 ~spatial subharmon-
ics!. Further experiments revealed that the subharmonics
also be excited in other crystals of the sillenite family@12–
14#. Furthermore it has been shown that doubling and
pling of the spatial period are also possible in the presenc
a standing light pattern and an external ac field@13,15#. Later
it was detected that the first subharmonic may split@16,17#:
instead of a single spatial frequencyKW /2, two frequencies
kW1 andkW2 nearKW /2 were observed in the Fourier spectrum
their sum was equal toKW . The splitting can be parallel~lon-
gitudinal! or perpendicular~transverse! to KW . It should be
noted that the Fourier spectrum of the space-charge fiel
photorefractive crystals is easily visualized on a screen
means of light diffraction.

Theoretical investigations have shown@18–20# that the
generation of photorefractive subharmonics~split or unsplit!
is due to the parametric instability against excitation
weakly damped low-frequency space-charge waves, wh
6072 © 1997 The American Physical Society
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55 6073FUNDAMENTALS OF THE NONLINEAR THEORY OF . . .
exist in electrically biased sillenite crystals. Additional e
periments@21,22# directly confirmed this conclusion. Th
theory developed in Refs.@18–20# enabled one to explain
fair amount of experimental data on subharmonics, and
to give an elementary interpretation of some known pho
refractive phenomena@23–25#. However, the basic theoret
cal results obtained up to now are valid in an approximat
linear in the wave amplitudes. Such a linear theory descr
the threshold conditions for the parametric excitation
space-charge waves, and the rate of exponential growth~in-
crement of the instability! of infinitely small wave ampli-
tudes. It cannot describe the final state of the waves bey
the threshold.

The aim of the present paper is to lay the foundation
the nonlinear theory of parametrically excited space-cha
waves in sillenites. This includes an analysis of the stab
zation mechanism for the parametric instability, a calculat
of the amplitudes of the split and unsplit subharmonics, a
an investigation of stability of subharmonic regimes agai
small perturbations.

In Sec. II we introduce nonlinear equations for the spa
charge field, and on the basis of these discuss the mos
portant properties of space-charge waves. This section
contains a summary of the main results of the linear the
of the parametric instability in sillenites.

In Sec. III we consider one of the basic concepts of
nonlinear theory, the nonlinear frequency shift for spa
charge waves. We distinguish two types of nonlinear sh
namely, the eigenshiftdv11, owing to the action of wave 1
on itself, and the mutual shiftdv12, due to the effect of
wave 2 on wave 1. It is remarkable that the contributions
dv12 coming from the forced oscillations with spatial fre
quencieskW11kW2 and kW12kW2 partly compensate for eac
other, and that this partial compensation is preserved eve
the limit kW2→kW1. The latter is connected with the long-rang
electrostatic interaction. We apply the general express
for dv12 to the cases of longitudinal and transverse split
the main subharmonicK/2.

In Sec. IV we find and investigate the stationary solutio
for split and unsplit subharmonics beyond the threshold
parametric instability. These solutions give the amplitud
and phases of the excited waves, which are important for
subsequent analysis of stability of the nonlinear regimes.
show that the nonlinear solutions can be simply interpre
in terms of the nonlinear frequency shifts. The difference
the nonlinear shiftsdv11 anddv12 in the limit kW2→kW1, leads,
in particular, to the result that an infinitely small splitting
the subharmonicKW /2 is accompanied by a finite change
the energy of the space-charge field.

In Sec. V we show that the split as well as unsplit su
harmonics do more than cause frequency shifts for w
waves; they also considerably renormalize the coupling
efficients of those weak waves with the pump, i.e., with
running light pattern. We find explicit expressions for t
renormalized coupling coefficients and discuss them.

In the same Sec. V we use the results of Secs. III and
to find the region of instability of the main subharmon
K/2 against the excitation of small three-dimensional per
bations. Our analysis shows that such an instability reg
always exists. However, not far beyond the threshold of
so
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subharmonic generation, it is restricted to the vicinity of t
pointKW /2. In other words, the instability of the main subha
monic may be qualified as a modulation one. One can exp
that a small spread of the wave vectors is able to stabi
such an instability. In Sec. VI we summarize the results
tained, and discuss further developments and application
the theory.

II. BASIC RELATIONS

Our starting point is the following three-dimensional no
linear equation for the potential of the space chargew:

Dwzt2
v0

l s
Dw2

1

l 0
Dw t1v0Dwz1

l D
2

l 0
D2w t

52
e

ēe0

a

\v
dI z1

e

ēe0

a

\v

1

E0
div~dI¹W w!

1
1

E0
div~Dw t¹W w!, ~1!

whereD is the Laplace operator. This equation describ
charge transfer in a photorefractive sillenite crystal subjec
an external electric fieldE0 ~parallel to thez axis!, and to
light with intensity I5I 01dI , whereI 0 anddI are the spa-
tially homogeneous and spatially oscillating parts ofI , re-
spectively. For a moving light pattern, created by a pair
laser beams detuned with a frequencyV, we have

dI5mI0cos~Kz2Vt !, ~2!

wherem is the contrast of the interference pattern andK the
fundamental grating vector, equal to the difference of
pump wave vectors.

In Eq. ~1! we have used the following notation:e is the
elementary charge,ēe0 is the dielectric susceptibility,a is
the absorption coefficient,\v is the energy of a light quan
tum, v05aI 0 /Nt\v is a characteristic frequency,Nt is the
effective trap concentration,l 05mtE0 is the drift length in
the external field,m is the mobility of the photoelectrons,t
their lifetime, l D5AkBTmt/e is the diffusion length,kB is
the Boltzmann constant,T is the absolute temperature
l s5 ēe0E0 /eNt is the characteristic screening length, and t
subscriptsz and t are the differentiation with respect to th
longitudinal coordinate and the time, respectively.

The procedure of deriving Eq.~1! and the region of its
applicability were described in detail in our earlier pap
@19#. Actually, Eq.~1! describes accurately the propagatio
damping, parametric excitation, and nonlinear interaction
space-charge waves in crystals with sufficiently large d
length for moderate light intensity.

The first two terms on the left-hand side of Eq.~1! de-
scribe dispersive and lossless wave propagation; if we
strict ourselves to these terms and putw
}exp(ikW•xW2ivkWt2gkWt), we obtain the dispersion law

vkW5
eg0

ēe0E0

1

kz
, ~3!

whereg05aI 0 /\v is the generation rate of photoelectron
Such a dependence of the frequency on the wave vecto
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highly unusual for waves. Actually, Eq.~3! is valid only in a
restricted region of thekW space.

The last three terms on the left-hand side of Eq.~1! char-
acterize the wave damping,

gkW5g0S 1Nt
1

e

ēe0mtE0
2kz

2
1

kBT

ēe0E0
2

k2

kz
2D , ~4!

which is clearly positive and even inkW and EW 0. The first,
second, and third terms in the brackets are connected
recombination, drift, and diffusion of photoelectrons, resp
tively. Only the last~diffusion! term depends on the trans
verse component of the wave vectorkW' ; this term grows
with k'

2 .
If the material parameters meet the inequal

eNtmt@ ēe0 ~which is valid for the sillenites!, the condition
for the weakness of the wave damping,gkW!vkW , is found to
be fulfilled for a large region of applied fields and wa
vectors@18,19#. Without an applied field the weakly dampe
space-charge waves are absent.

The three terms on the right-hand side of Eq.~1! describe
linear excitation of the space-charge field by a moving lig
pattern, parametric excitation of the waves, and the effect
the nonlinear wave interaction, respectively. If we disca
the last two terms, accept Eq.~2! for dI , and put
w5wKexp(iKz2iVt)1 c.c., for the amplitude of the electro
static potentialwK we obtain

wK52 i
mE0
2K

vK

V2vK1 igK
. ~5!

ForV.vK this formula describes nothing else than the l
ear resonant excitation of an oscillator with eigenfreque
vK and dampinggK .

1 Far from resonance,uV2vKu @gK ,
the dampinggK may be neglected.

Spatial subharmonics, split as well as unsplit, are the
sult of the instability of the moving fundamental grating wi
respect to the excitation of weakly damped space-cha
waves. The wave vectors of the excited waves meet the
lowing well-known conditions of spatially temporal~para-
metric! resonance:

V5vkW1
1vkW2

,
~6!

KW 5kW11kW2.

They are also called decay conditions@4,9#, being associated
with the transformation of an oscillation quantumKW ,V into a
wave pair 1 and 2@4,9#. In the general case, Eqs.~6! yield a
surface inkW space, the decay surface. Any given vectorkW1
related to this surface is coupled with another vectorkW2, and
vice versa. For our particular dispersion law~3!, the decay
surface is given by the equations

1The so-called resonant enhancement of the photorefractive
sponse@23#.
ith
-

t
of
d

-
y

-

e
l-

~k1,2!z5
K

2
~16A124«!,

~7!
kW1'52kW2',

where« is the useful dimensionless parameter

«5
vK

V
5

e

ēe0

aI 0
\v

1

E0KV
. ~8!

We see that Eqs.~7! can be fulfilled only for«<1/4, that is,
for a frequencyV>4vK . For V.4vK the decay surface
consists of a pair of planes perpendicular to thez-axis; see
Fig. 1. The corresponding wave vectorskW1 andkW2 belong to
different planes and have opposite transverse projecti
For V54vK ~i.e., for «5 1

4! the two planes coincide; the
special casekW15kW25KW /2 corresponds here to the first su
harmonic. ForV,4vK , the decay is forbidden.

To find the threshold and increment of the decay insta
ity, one has to insert into Eq.~1! the ansatz

w5wK ei ~Kz2Vt !1w1 e
i ~kW1•x

W2vkW1
t !1w2 e

i ~kW2•x
W2vkW2

t !1 c.c.,
~9!

and to isolate next the terms with spatial frequencieskW1 and
kW2. As a result, one obtains the following coupled system
linear equations for the slowly varying amplitudesw1 and
w2* ,

S ddt1gkW1Dw15 iV1w2* ,

~10!

S ddt1gkW2Dw2*52 iV2*w1.

The expression for the coupling coefficientsV1 andV2 is the
same up to an interchange of the indices 1 and 2, and

V15
KV

k1
2k1z

Fm2 « kW1•kW22eKS kW1•kW21« k2
2 k1z
k2z

D G . ~11!

Here eK52 iKwKE0 is the dimensionless amplitude of th
space-charge field for the fundamental grating. In the de
region, 4«<1, we find from Eq.~5! that
e-

FIG. 1. Geometrical scheme for the decay of the fundame
grating forV.4vK . The vertical solid lines stand for the deca
surface; the dotted lines indicate the boundary of the stability
gion.dk is the width of the decay surface~see the last paragraph o
Sec. II!. It is only indicated for one sheet of the decay surface.
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eK.
m

2

«

12«
. ~12!

SinceeK is real, the coupling constantsV1,2 are also real.
Each coupling constant consists of several contributio

The first term in square brackets in Eq.~11! comes from the
second term of the right-hand side of the starting equa
~1!, and the last two terms, proportional toeK , originate
from the last term of Eq.~1!. In the important special cas
«5 1

4, when k1z5k2z5K/2 and k1
25k2

2, from Eq. ~11! we
obtain

V15V25
V

4~11tan2u!
@m210eK1tan2u~6eK2m!#,

~13!

whereu is the angle between the vectorskW1,2 and thez axis,
see Fig. 1. Terms of different origin~proportional tom and
proportional toeK) are clearly seen in Eq.~13!. Obviously a
compensation of the first two terms in square brackets le
to a growth ofV1,2 with increasingu, whereas a compensa
tion of the last two terms results in an angular decrease of
coupling coefficientsV1,2. In the framework of the presen
approximation, linear inw1,2, the amplitudeeK is given by
Eq. ~12!; for «5 1

4 it gives 6eK5m, i.e., the total compensa
tion of the last two terms in Eq.~13!. As we shall see below
Eq. ~10! also remains valid beyond the framework of t
theory linear in the amplitudesw1,2, whereas the expressio
for eK alters because of the coupling of the fundamen
grating with the excited waves. Note that the contributions
eK allowing for nonresonant excitation of the higher spat
harmonics, 2K, 3K, . . . remain negligible for«&1/4.

Puttingw1 ,w2*}exp(Gt) in Eq. ~10!, for the increment of
the instability~characteristic exponent! we obtain

G52 1
2 ~gkW1

1gkW2
!1A4~gkW1

2gkW2
!21G0

2, ~14!

whereG0
25V1V2* . Since the productV1V2* is positive, the

incrementG is real. If the difference of the dampingsgkW1,2
is

relatively small, ugkW1
2gkW2

u !gkW1,2
.g, we have

G5G02g; this assumption is often justified.
SinceV1 andeK are given by Eqs.~11! and ~12!, a de-

crease of the transverse component of the wave vector~equal
in value for waves 1 and 2! favors the instability. Putting
k'[(k1,2)'50, we find the following formula for the
threshold contrast:

mth5
12«

«
Agk1

gk2

vk1
vk2

. ~15!

The right-hand side of this expression is, of course, a fu
tion of the frequencyV. The minimum ofmth takes place at
V54 vK ~and therefore at«5 1

4!, which corresponds to the
excitation of the first subharmonic,K/2. Here we have

mth53 gK/2 /vK/2. ~16!

For V,4 vK the decay conditions~6! are no longer ful-
filled, whereas increasingV in comparison with 4vK results
in increasingmth .
s.

n

ds

e

l
o
l

-

The relations~14!–~16! are obtained for a pair of waves
and 2 which meet the resonance conditions~6! exactly. Each
resonance has, however, a finite width. For this reason,
result of the instability, waves are also excited with wa
vectors close to the decay surface; see Fig. 1. The phys
width of the decay surface can be estimated
dk'k GkW /vkW!k. The larger the incrementGkW , the wider
the region of the instability.

III. NONLINEAR FREQUENCY SHIFTS

The concept of the nonlinear frequency shift forms t
basis of the nonlinear theory of photorefractive subharm
ics. Nonlinear frequency shifts are determined by the eig
nonlinearity of the medium. To describe them we negl
wave damping and putdI50. Equation~1! takes then the
form

DS wzt2
v0

l s
w D5

1

E0
div~Dw t¹W w!. ~17!

Frequency shifts may be of two types, eigenshifts and mu
ones. The eigenshift is created by the wave itself. The eig
shift of the frequency of the wave with frequencyvkW1

with

the wave vectorkW1 will be denoted bydv11. The frequency
shift of wave 1 can also be caused by other waves. T
change of the frequencyvkW1

by a wave with wave vector

kW2 will be calleddv12.
To calculate the eigenshiftdv11, we seek the potential

w, in the form

w5w1 e
i ~kW1•x

W2vkW1
t !1w2 e

2i ~kW1•x
W2vkW1

t !1c.c., ~18!

wherew1,2 are slowly varying amplitudes. The second ter
in Eq. ~18! allows for the forced oscillation with wave vecto
2kW1 and frequency 2vkW1

. Inserting Eq.~18! into Eq.~17!, and
separating the spatial harmonics, we find

dw1

dt
52

10 v1k1
2

k1z E0
w2w1* ,

~19!

w25 i
k1
2

6 k1z E0
w1
2.

We have neglected the temporal derivative ofw2, taking into
account the smallness of the correctiondv11 compared to
v1[vkW1

. Insertingw2 into the equation forw1, we obtain the

equation forw1 in the formdw1 /dt52 idv11w1 with

dv11

v1
5
5 ueW1u2

3
~11tan2u!, ~20!

whereeW152 ikW1w1E0
21 is the normalized amplitude of th

space-charge field for wave 1, andu is the angle between
wave vectorkW1 and thez axis. We see that the eigenshi
dv11 is a positive increasing function ofk' .

To find the mutual shiftdv12, which characterizes the
effect of wave 2 on wave 1, one has to calculate the for
oscillations with the sumkW11kW2 and the difference,kW12kW2
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of the spatial frequencies. Correspondingly, the mutual s
consists of two terms,dv125dv12

1 1dv12
2 . The general ex-

pressions fordv12
6 are derived analogously to the calculatio

of dv11, and are given by

dv12
1 5

kW1•kW2~kW11kW2!
2~v11v2!1k2

2~kW1•kW21k1
2!v2

k1zk1
2k2

2~kW11kW2!
2

3
k2
2~kW1•kW21k1

2!v21k1
2~kW1•kW21k2

2!v1

~k1z1k2z!~v11v2!2k2z vkW2

ueW2u2,

~21!

dv12
2 5

kW1•kW2~kW12kW2!
2~v12v2!1k2

2~k1
22kW1•kW2!v2

k1zk1
2 k2

2~kW12kW2!
2

3
k1
2~kW1•kW22k2

2!v12k2
2~kW1•kW22k1

2!v2

~k1z2k2z!~v12v22vkW12kW2
!

ueW2u2.

Here and in the rest of Sec. III we use the abbreviat
v1,25vkW1,2

, as long as it does not lead to misunderstandi
It is easy to see that the total nonlinear shift of the f

quency,dv1, is given by the sum of all possible elementa
~eigen and mutual! shifts.

Two important properties of the contributionsdv12
6 stem

from Eqs.~21!: ~i! In the limit kW2→kW1 the following relation
holds true:dv12

1 52dv11. ~ii ! The contributiondv12
2 has no

limit for kW2→kW1, and, for ukW22kW1u !k1, we have

dv12
2

v1
522ueW2u2

~qW •kW1!
2

q2k1z
2 , ~22!

whereqW 5kW12kW2. Therefore the shiftdv12
2 is negative for

wave vectorskW1 andkW2 close to each other, and it depen
strongly on the angle between the vectorsqW andkW1.

The first property is common for nonlinear media
which the four-wave interactions are due to the quadr
nonlinearity. The nonlinear frequency shifts for surfa
waves@26# and spin waves@8# may serve as examples. Th
second property is specific for space-charge waves bec
for most types of waves the contributiondv12

2 tends to zero

for kW1→kW2. We stress that this peculiarity is due to the lon
range electrostatic interaction; it is not connected with
approximations used.

Below we consider some important special cases. In
one-dimensional case (k1,2)'50, the expressions fordv12

6

are simplified considerably:

dv12
6

v1
52ue2u2f6S k1k2D , ~23!

where

f6~r !5 f6~r21!5
r 263r11

r 26r11
. ~24!

For r51 the functionsf1(r ) and f2(r ) have a maximum
and a minimum, respectively, with f1(1)5 5

3 and
ift

n
.
-

ic

se

-
e

e

f2(1)521. Away from the extremum the functionf1(r )
decreases monotonically to 1, whereasf2(r ) changes its
sign and becomes positive; see Fig. 2. Fork15k2 we find for
the total mutual shift

dv12

v1
5
4

3
ue2u2 . ~25!

Let us consider now a pair of two-dimensional configu
tions ~a! and~b!, shown in Figs. 3~a! and 3~b!. In these cases
we havek1z5k2z , i.e., the unperturbed frequencies of wav
1 and 2 are the same. For small propagation ang
tan2u!1, we obtain, from Eqs.~21!,

dv12

v1
5
10

3
ueW2u2~12 1

5 tan
2u!, ~26a!

dv12

v1
5
10

3
ueW2u2~12 8

5 tan
2u! , ~26b!

respectively, for the configurations~a! and~b!. The contribu-
tion dv12

2 is here negligible. The case of large anglesu is of
little interest because of the large damping of the waves

We note that a correctiondv12 to the eigenfrequency
v15vkW1

can be given not only by an eigenmode 2 but a

by a forced oscillation with spatial frequencykW2 and tempo-
ral frequencyv2ÞvkW2

. In particular, the fundamental gra

FIG. 2. Dependence of the parametersf6 on the ratio of the
wave vectorsr .
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FIG. 3. Basic two-dimensional configuration
for the mutual frequency shift.
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hich
ing, induced by a running light pattern, may play the role
such an oscillation. In similar cases, the frequencyv2 in Eqs.
~21! is just the frequency of forced oscillations.

Note finally that the frequency shifts introduced above
very convenient to use. They account for certain nonlin
contributions of the second-order perturbation theory
means of a simple renormalization of the coefficients of
linear theory. Furthermore, it is known@27,28# that the non-
linear frequency shifts play an important role in the stab
zation of the parametric instability.

IV. STATIONARY SOLUTIONS FOR SUBHARMONICS

A. Unsplit subharmonic K/2

Let us put the following into in Eq.~1!:

w5wK ei ~Kz2Vt !1wK/2 e
i /2 ~Kz2Vt !1c.c. ~27!

We suppose that the amplitudewK/2 is a finite quantity
and the frequencyV is near its limiting value 4vK . Sepa-
rating the spatial frequenciesK/2 andK and introducing a
dimensionless amplitude of the space-charge fie
ek52 ikwkE0

21, with k equal toK or K/2, we obtain the
following coupled system of nonlinear equations:

~gK/22 idK/2!eK/252
i

2
vK/2~m210 eK!eK/2* ,

~28!

eK5
m

6
2
1

3
eK/2
2 ,

wheredK/250.5V2vK/2 is the linear detuning. The secon
equation describes the effect of the subharmonic on the
damental grating.

Inserting the second of Eqs.~28! into the first one, we
obtain the following remarkable equation for the amplitu
eK/2 :

eK/2~gK/22 idK/21
5
3 ivK/2 ueK/2u2!5 i

m

3
vK/2 eK/2* .

~29!

This shows clearly the mechanism of stabilization of t
parametric instability for increasing subharmonic amplitu
namely the mismatch of the parametric resonance owin
the frequency shiftdv11; see Eq.~20!. Actually, Eq.~29! is
the threshold condition for the instability, allowing for th
f

e
r
y
e

-

,

n-

,
to

renormalization of the frequency. We emphasize that t
renormalization comes from the nonlinear correction
eK(eK/2) in Eq. ~28!.

Writing eK/2
2 5 ueK/2u2exp(iF), from Eq. ~29!, we easily

obtain

ueK/2u25
1
5 ~3D1Am22mth

2 !,
~30!

sinF5
mth

m
,

where the threshold value of the contrastmth is given by Eq.
~16!, and

D5
dK/2
vK/2

5124« . ~31!

The dimensionless parameterD @a stand-alone symbol; no
the Laplace operator as in Eq.~1!# is simply the normalized
linear detuning, which is small against 1. This solution f
the subharmonicK/2 holds true only above threshold
m.mth . The value ueK/2u 2 follows a square-root law with
increasing contrastm, linearly with increasing normalized
detuningD. For D'1, when ueK/2u becomes comparabl
with 1, our approximation loses its applicability. Ne
threshold the phaseF is aboutp/2, and far away from
threshold,m@mth , it is close to zero. As we shall see in Se
VI, knowledge of the phaseF is necessary for analyzing th
stability of the steady state.

Within the calculation procedure used we may not requ
smallness of ueK/2u and of the correction toeK , given by
Eq. ~28!, in comparison with ueKu . The relatively large
value of ueK/2u is connected with the fact that the subha
monic is caused by a resonant parametric process, whe
the fundamental grating is a forced oscillation far away fro
the linear resonance,V2vK.3 vK@gK .

In accordance with Eqs.~28! and~31! the excitation of the
subharmonic gives rise to an imaginary part of the amplitu
of the fundamental gratingeK , that is, to a spatial shift be
tween the fundamental grating and the interference light p
tern. As is known, such a shift is of importance for the o
tical photorefractive phenomena@29#. In particular, it should
result in an energy exchange between the pump beams w
form the running light pattern.
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FIG. 4. Geometrical schemes clarifying th
longitudinally ~a! and transversally~b! split sub-

harmonics. Only the vectorskW1 andkW2 and their
multiples are indicated by arrows. The arrows

KW /2 andKW are omitted, but their lengths are ind
cated.
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Above we took into consideration only the spatial fr
quenciesK, K/2, and the corresponding eigenshiftdv11 for
the space-charge wave with wave vectork15K/2. Including
into the theory the mutual shift for the subharmonicdv12
caused by the fundamental grating~i.e., the terms with the
spatial frequency 3K/2) would result in corrections quadrat
in m. One can show that these corrections remain small u
m51. Likewise one can understand that nonlinear corr
tions to the dampinggK/2 would lead to additional terms in
Eqs.~29! and ~30! which are of ordergK/2

2 /vK/2
2 .

B. Split subharmonics

For one and the same value of the frequencyV we can
find ~in addition to the above solution for the main subh
monicK/2) a whole family of solutions for split subharmon
ics. A split subharmonic consists of a pair of waves w
wave vectorskW1 andkW2 and frequenciesv1 andv2, the sum
of which isKW andV, respectively. In general, the freque
cies v1,2 are different from the eigenfrequenciesvkW1,2

be-
cause of the nonlinear shifts. The equations for the w
amplitudesw1 andw2, replacing Eq.~29!, are

@g11 i ~dv12d1!#w15 iV1w2* ,
~32!

@g22 i ~dv22d2!#w2*52 iV2*w1 .

Hereg1,25gkW1,2
are the dampings of the waves,V1,2 the cou-

pling coefficients defined by Eqs.~11! and ~12!,
d1,25v1,22vkW1,2

the linear detunings, anddv1,2 the overall
nonlinear frequency shifts of waves 1 and 2 including
appropriate eigenshifts and mutual contributions.

Equations~32! furnish an opportunity to clarify the basi
difference between split and unsplit subharmonics. Fo
split subharmonic, apart from the eigenshifts related to
spatial frequencies 2kW1 and 2kW2, there is a mutual shift, cor
responding to the spatial frequencies,kW16kW2. Because of the
difference between eigenshifts and mutual frequency sh
~see Sec. III!, the values ofdv1,2 in Eqs.~32! do not tend to
dv1155 vK/2 ueK/2u 2/ 3 for kW1,2→KW /2. In other words, even
an infinitely small split of the subharmonicK/2 gives a finite
change of the energy of the space-charge field including
energy of the fundamental grating.

The absence of a continuous transition between the
and unsplit subharmonics is connected with the breaking
the spatial symmetry by the splitting. The unsplit subh
to
-

-

e

e

a
e

s,

e

lit
of
-

monic corresponds to a periodic solution for the spa
charge field~with a period 4p/K); any infinitely small split
breaks this periodicity.

In the following calculations we restrict ourselves to sm
splits, assuming thatu2kW1,22KW u !K and u2v1,22Vu !V.
Furthermore, to avoid clumsy expressions, we consider o
the types of splits simplest in symmetry, namely longitudin
and transverse splits; see Fig. 4.

The longitudinal split@see Fig. 4~a!# corresponds to a one
dimensional problem. The wave vectorsk1,2 may here be
presented in the form

k1,25
K

2
~16k! . ~33!

The small dimensionless parameterk characterizes the de
gree of the split. At first we assume the linear detunin
d1,2 in Eq. ~32! to be the same, which corresponds to eq
intensities of the waves 1 and 2. In this case,

d1,25vK/2~D2k2! , ~34!

whereD is given again by Eq.~31!. For the overall nonlinear
frequency shiftsdv1, dv2 we obtain, using the results o
Sec. III,

dv1,25
vK/2

3
~5ue1,2u214ue2,1u2! , ~35!

where the first term corresponds to the eigenshift and
second one to the mutual shift. The dampingsg1,2 and the
coupling constantsV1,2 @see Eq. ~13!# are gK/2 and
2m vK/2 /3, respectively, in the leading approximation
k. Taking into account Eqs.~34! and~35!, from Eq.~32! we
obtain

ue1,2u25
1
3 ~D2k21 1

3Am22mth
2 ! . ~36!

The caseD5k2 corresponds to the excitation of waves e
actly meeting the decay conditionsv1,25vk1,2

. As follows
from Eq. ~36!, an increase of the split leads to a decrease
the intensities ue1,2u2.

A more general solution fore1,2 may be obtained for un-
equal~but not too different! linear detuningsd1 andd2. This
gives different intensitiesue1u2 and ue2u2. The sum of the
intensities, ue1u21 ue1u2, remains, however, the same as f
the cased15d2.

The sum of the intensities of the split componen
ue1u21 ue2u2, does not tend toueK/2u2 when the relative
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value of the splitk goes to zero. As follows from Eqs.~30!
and ~36!, independent of the valueD we have

~ ue1u21ue2u2!k505
10
9 ueK/2u2 . ~37!

It is not difficult to find from Eqs.~32! that the sum of the
phases of the parametric waves,F5 arg(e1e2), is again
given by Eq.~30!.

Let us now consider the symmetric transverse split;
Fig. 4~b!. In this case the linear detunings are the sam
d1,25vK/2 D. Since ueW1u 25 ueW2u 2, the nonlinear shifts
dv1 anddv2 are equal. To find them we use Eqs.~20! and
~26b!. In the leading approximation inu2, we obtain

dv1,255vK/2 ueW1,2u2~12 11
15u2! . ~38!

Note that in this case there is no mutual contributions to
overal nonlinear frequency shiftsdv1 anddv2. As follows
from Eq. ~13!, both coupling constantsV1 andV2, are, with
the same accuracy, equal to2m vK/2(12u2)/3. It is worth-
while to remind the reader that the effect of waves 1 and 2
the amplitudeeK is equivalent to the already considere
renormalization of the frequencies. For this reason, we
Eq. ~12! of the linear theory foreK . As for the wave damp-
ings g1,2, we choose them equal togK/2 , neglecting a pos-
sible angular dependence. The point is that the first
terms~which do not depend onu) usually dominate in Eq.
~5! for gkW so that the dependenceg(u) is relatively weak.
Taking this into account, from Eq.~32! we obtain

ueW1,2u2.
1
15 ~11 11

15u2!@3D1Am2~12u2!22mth
2 # .

~39!

The angular dependence under the radical describes a
crease of the threshold of the instability owing to a decre
of the coupling constants.

In the limit u→0, we have

~ ueW1u21ueW2u2!u505
2
3 ueK/2u2 . ~40!

In such a way, an infinitely small transverse split leads t
decrease of the subharmonic energy of about 30%. The
son for this conspicuous drop is the absence of the nega
contribution dv12

2 to the mutual frequency shift. For th
transverse split the sum of the phases of waves 1 and
identical to that for the previous cases.

V. ANALYSIS OF STABILITY

One mechanism which may cause the instability of
subharmonics against small perturbations is quite clear. T
is again the decay of the fundamental grating in accorda
with the resonance conditions~6!. The wave vectorskW1,2 re-
fer here to a pair of weak waves, and the fundamental gra
is depleted by the coupling with the subharmonic. T
depletion alters, in particular, the relation between two d
ferent contributions to the coupling coefficientsV1,2; see Eq.
~11!. The weak waves 1 and 2 experience nonlinear
quency shifts, caused mainly by the subharmonic. The sh
coming from the fundamental grating are of minor impo
tance, for they are nearly the same for the strong and w
space-charge waves with the wave vectorskW1,2.KW /2.
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Apart from the above mechanism affecting the instabili
there is one more important factor. It is related to anot
nonlinear process, namely, to the conversion of two subh
monic wave quanta into a pair of weak waves,kW1,2. Clearly,
this process meets again the decay conditions~6!. We shall
see below that this additional process results in renormal
tion of the coupling coefficientsV1,2 given by Eq.~11!.

In accordance with the aforesaid we can represent
small perturbation of the potentialdw in the form

dw5a1 e
i ~kW1•x

W2v1t ! 1a2 e
i ~kW2•x

W2v2t ! 1 c.c., ~41!

where the frequenciesv1,2 are near the eigenvaluesvkW1,2
.

Below we derive equations for the amplitudesa1,2 to analyze
the renormalization both of the frequencies and of the c
pling coefficients. For the sake of simplicity we restrict ou
selves to the case of the main subharmonicKW /2.

A. Renormalization of the coupling coefficients

Figure 5 shows the wave vectorskW1,2 meeting the condi-
tion kW11kW25KW . The difference gratings, created by the su
harmonicKW /2 together with the waves 1 and 2, respective
have the same spatial frequency,qW :

qW 5kW12KW /25KW /22kW2 . ~42!

This means that the gratings in question are responsible
only for the contributionsdv2 to the mutual frequency shifts
for waves 1 and 2~see Sec. III!, but also for the mutual
coupling of these waves. This coupling is different from t
one considered above~in Sec. III! because it is due to the
finite amplitude of the subharmonic.

To describe this additional coupling one should return
Eq. ~17!, which incorporates all actual linear and nonline
terms. First of all, we calculate the amplitude of the forc
oscillation of the potential,wqW . Taking into account Eq.~41!,
for q!K/2 we have

wqW5
~u212k!a1eK/2* 1~u222k!a2* eK/2

u21k2 , ~43!

whereu is again the angle between the vectorskW1,2 and the
z axis ~see Fig. 5! and k52qz /K. The components (k1,2)z
are expressed in terms ofk, using Eqs.~33!. From Eq.~43!
one can see that the amplitudewqW depends strongly on the
orientation of the vectorqW .

Next we obtain the equations for the slowly varying am
plitudesa1,2, describing the diffraction of the subharmon
K/2 from the gratingqW . Using Eq.~17! we obtain

da1
dt

5 ivK/2

u21k

u211
wqW eK/2 ,

~44!
da2*

dt
52 ivK/2

u22k

u211
wqW eK/2* .

Inserting Eq.~43! into Eqs.~44!, we arrive at the following
matrix equation fora1 anda2* :
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d

dt S a1a2* D 5S 2 idv12
2 idV1

2 idV2* idv21
2 D S a1a2* D . ~45!

The diagonal matrix elements again describe the mutual
quency shifts, whereas the off-diagonal elements give
nonlinear corrections to the coupling coefficientsV1 and
V2* . The expressions fordv2 anddV are most important in
the regionu& uku !1, where they are not negligibly smal
In this region we have

dv12
2 5dv21

2 522vK/2 ueK/2u2S 11
u2

k2D 21

,
~46!

dV15dV2522 vK/2 eK/2
2 S 11

u2

k2D 21

.

The expressions for the frequency shifts fully agree w
Eq. ~22!. The correction to the coupling coefficients is ge
erally complex; it depends not only onueK/2u 2 but also on
the phaseF5arg(eK/2)

2. The largest correction takes plac
in the one-dimensional case; with an increasing value of
transverse component of the wave vectors,k' , it decreases
rapidly.

The renormalized coupling coefficients for waves 1 an
are obviouslyṼ1,25V1,21dV1,2, with V1,2 andeK given by
Eqs. ~11! and ~12!, respectively. Fork!1 and u2!1 we
obtain

FIG. 5. Geometrical schemes for the renormalization of the c
pling constants of the weak parametric waves 1 und 2 by unspli~a!
and split~b! subharmonics. Thick vectors refer to strong waves. T

sum of the wave vectorskW1 and kW2 is equal to the fundamenta

grating vectorKW .
e-
e

-

e

2

V1.V2.2
vK/2

3~11u2!
~m25eK/2

2 13u2eK/2
2 !,

~47!

Ṽ1.Ṽ2.2
vK/2

3~11u2!
~m2ceK/2

2 13u2eK/2
2 !,

wherec5526(11u2/k2)21. We see that the renormaliza
tion results in a negative contribution to the parameterc; in
the one-dimensional case this term changes the sign ofc. It
should be understood that keepingu2 in the angular factor
(11u2)21 gives a more accurate result than necessary
the regionu& uku , wheredV1,2 is comparable withV1,2.
Outside this region we havedV1,2!V1,2 andṼ1,2.V1,2. Let
us also to note that the inequalityu&k!1, defining the re-
gion of strong renormalization, is equivalent to the conditi
uq'u & uqzu !1. The geometric meaning of this conditio
is clear from Fig. 5. Finally, we remind the reader thateK/2

2 is
given by Eqs.~30!.

B. Threshold equation

To find the threshold conditions for the instability of th
subharmonicK/2, we have to use the following equation
incorporating all the above-considered causes for chang
the amplitudes of small perturbations,a1,2:

F ddt1g11 i ~dv12d1!Ga15 iṼ1a2* ,
~48!

F ddt1g22 i ~dv22d2!Ga2*52 iṼ2a1 .

The parametersd1,25v1,22vkW1,2
are again the linear detun

ings. They can compensate for the nonlinear frequency sh
and as such favor the instability. The overall nonlinear f
quency shifts for the weak waves,dv1 and dv2, are the
mutual shifts induced by the subharmonicK/2. They are
given by the appropriate formulas of Sec. III. The renorm
ized coupling coefficientsṼ1,2 are specified by Eq.~47!.

Let us next put in Eqs.~48! a1 ,a2*}exp(iG 9t), where
G 9 is an unknown real parameter. It can be considered as
imaginary part of the incrementG, the real part of which is
zero. Actually, we use the general form of the solution
a1,2, allowing for temporal oscillations at the threshold
the instability. Multiplying two algebraic equations@which
result from Eqs.~48!#, and canceling the common facto
a1a2* , we obtain the following real threshold equation:

g21~dv̄2 d̄ !25R1~ I /2g!2 , ~49!

where

dv̄5~dv11dv2!/2, R5Re~Ṽ1Ṽ2* !,

d̄5~d11d2!/2, I5Im~Ṽ1Ṽ2* !, ~50!

andg5gK/2 . When deriving Eq.~49! we again neglected the
difference betweeng1,2 andgK/2 . A more detailed analysis
shows that this difference leads to no real effect, but only

-
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clumsy formulas. One can also show that the subharmon
unstable when the right-hand side of Eq.~49! exceeds the
left-hand one.

We should now find explicit expressions for the para
eters given by Eqs.~50!. Accepting representation~33! for
the projections (k1,2)z we obtain that the average linear d
tuning d̄.vK/2(D2k2). The dimensionless parameterD re-
tains its former meaning, and is given by Eq.~31!.

For the average nonlinear shift,dv̄, we obtain, using Eqs
~22!, ~26a!, ~30!, and~46!,

dv̄.2vK/2ueK/2u2S 532
k2

k21u2D . ~51!

In deriving Eq.~51! we neglected the weak angular depe
dence ofdv12

1 in comparison with the strong dependence
dv12

2 ; the latter is expressed by the negative contribution
dv̄. This approximation is fully justified for the following
analysis. Furthermore, using Eqs.~30! and~47!, we find, for
u& uku ,

R.gK/2
2 1vK/2

2 F13 ueK/2u 2S 51
k225u2

k21u2 D2D G2
2vK/2

2 ueK/2u4
k2 u4

~k21u2!2
,

I 2

4gK/2
2 .vK/2

2 ueK/2u4
k2 u4

~k21u2!2
. ~52!

As follows from Eqs.~52!, the last contribution toR ~which
is small against the first two terms foru& uku ) compensates
for the term (I /2g)2 in the threshold equation~49!.

C. Instability of the subharmonic K/2

We begin our analysis of the threshold equation with
one-dimensional case. Puttingu50 in Eqs. ~51! and ~52!,
from Eq. ~49! we obtain the following simple condition fo
instability,

k2, 2
3 ueK/2u2 . ~53!

This condition shows that the subharmonicK/2 is always
unstable. The instability is of the modulational type, beca
it results in the excitation of waves with the wave vecto
near toK/2. The smaller the amplitude of the subharmon
the narrower the region of instability.

Let us compare the limiting value of the parameterk2

corresponding to the instabilityk l
252 ueK/2u 2/3, with the

value k0
25D meeting the decay conditions~7!. Using Eq.

~30!, we find

k l
2

k0
2 5

2

5
S 11

Am22mth
2

3D
D . ~54!

We see that the relative width of the instability region b
comes smaller with increasingD5124«, and tends to 2/5.

It is worthy of note that the instability of the subharmon
K/2 originates from the difference gratings with wave ve
tors kW1,22KW /2, and more precisely from the negative cont
is

-

-
f
o

e

e

,

-

-

bution to the nonlinear frequency shiftdv12
2 . In the absence

of such a contribution the subharmonic would be stable,
cause the positive contribution to the nonlinear frequen
shift, dv12

1 .10 vK/2 ueK/2u 2/3, would shift weak waves ou
of the parametric resonance for arbitrary values ofueK/2u 2

andk. This fact may be checked by dropping the terms in
threshold equation which stem from the difference gratin

We have seen earlier@see Eqs.~22! and ~46!#, that the
difference contributions to the nonlinear frequency shifts a
to the coupling constantsṼ1,2 decrease rapidly with increas
ing angleu between the wave vectors of the weak waves a
thez axis. Therefore one can expect that the region of ins
bility is narrow not only with respect tok but also with
respect tou. In line with this assumption, from Eqs.~49!–
~52! one can obtain the following inequality restricting th
instability region in theqW plane:

u2

k2 ,
2ueK/2u223k2

10ueK/2u213k2 . ~55!

This condition, as well as inequality~53!, does not explicitly
contain the parameterD5124«. As follows from Eq.~55!,
the maximum possible value ofu is not larger than
0.17 ueK/2u , which is much smaller than 1. This value corr
sponds tok.0.55 ueK/2u . Note that the ratiou/k is nothing
else but the tangent of the angle of inclination of the vec
qW against thez axis; see Fig. 5. The value of this inclinatio
angle becomes larger with decreasingk, but it does not ex-
ceed 11.3°. Figure 6 shows the region of instability for se
eral representative values ofueK/2u .

Note finally that terms of higher order inu2 ~which are
not important in the above considered angular region,u
& uku ) act stabilizingly on the weak waves propagating u
der large angles,u @ uku . Therefore the above region o
instability is unique for ueK/2u 2!1.

VI. DISCUSSION

We have considered in detail the main elements of
nonlinear theory of space-charge waves. This theory ena
one to describe the parametric excitation of these waves
running light pattern, to find various stationary subharmo
regimes beyond the threshold of the instability, and to a
lyze the stability of these nonlinear regimes against sm
perturbations. One of the basic elements of the theory are
nonlinear eigenshift and mutual frequency shift. These sh
strongly affect the above-threshold behavior of the param
ric waves, bringing them in or removing them from res
nance. In particular, the amplitudes of the split and uns
subharmonics are determined by the appropriate nonlin
frequency shifts. The analysis of the stability of the statio
ary solutions involves not only the frequency shifts of we
waves but also other elements of the theory: the renorm
ization of the coupling coefficients and the feedback of
subharmonics on the pump. Here not only the intensities
the parametrically excited waves but also their phases ar
importance. Some important details of the analysis are c
nected with the peculiar features of the system considered
particular with the unusual dispersion law of the spa
charge waves and with the presence of the anomalously l
‘‘difference’’ contributions to the frequency shifts.
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FIG. 6. Boundary of the instability region o
the subharmonicK/2 for several values of
ueK/2u . Curves 1, 2, and 3 correspond t
ueK/2u 250.1, 0.2, and 0.4, respectively.
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Under the same external conditions~the same fundamen
tal grating vectorKW , frequencyV, contrastm, and intensity
I 0) the nonlinear equations admit a whole family of statio
ary solutions for split and unsplit subharmonics. These so
tions differ considerably in the energy of the space-cha
field. We have shown that the main subharmonicK/2 is
modulationally unstable. This gives some hope that the
stability may be stopped by a small broadening of the F
rier spectrum of the excited waves.

An exhaustive analysis of stability of various nonline
regimes is beyond the scope of our paper, although su
study should not present fundamental difficulties. In parti
lar, it is easy to understand that the main modification of
theory necessary for analyzing the stability of the split s
harmonics is taking into account not only one spatial grat
qW for each pair of weak waves, but two gratings,qW 1 and
qW 2, see Fig. 5~b!. The structure of Eq.~48! remains the same
in this case.

Among the subharmonics considered in Sec. IV, the tra
versally split one has the greatest chance to be stable.
point is that the negative contributiondv12

2 is negligibly
small for any weak wave pair, with the wave vectors nea
the primary oneskW1 andkW2; see Fig. 4~b!. The positive fre-
quency shiftdv12

1 is not small here, and it represents
important stabilizing factor for the instability.

It should be noted that the transverse split may occur in
arbitrary plane including the fundamental grating vector;
Fig. 4. This axial degeneration enables one to construct
only bichromatic solutions for the split subharmonics b
also more complicated steady states which include an infi
set of parametric wave pairs. Such wave regimes should
d

-
-
e

-
-

a
-
e
-
g

s-
he

o

n
e
ot
t
te
be

described not dynamically but statistically@9#.
The possibilities of a numerical simulation of the initi

dynamic equations for the space-charge field are, proba
restricted to the one-dimensional case. It would be exped
to verify numerically the fact of the modulation instability o
the main sumharmonicK/2 in this case, and to find the fina
wave distribution beyond the threshold of the parametric
stability.

For future theoretical studies of the subharmonics care
experiments are of upmost importance. Unfortunately,
majority of experiments performed up to now has only de
onstrated one or another instability of the fundamental g
ing. A detailed experimental study of the subharmonics
quires, first of all, a high homogeneity of the pump intens
I 0 and of the external fieldE0. An inhomogeneity of these
parameters results in a spatial modulation of the freque
vK and, therefore, in the coexistence of different nonline
regimes in different parts of the sample. Under these circu
stances optical measurements can only inform about ave
properties of the parametrically excited space-charge wa
We hope that the development of a nonlinear theory
space-charge waves and the performance of careful ex
ments will furnish a better understanding of space-cha
wave instabilities and the effect of the generation of subh
monics on the photorefractive properties of sillenites.
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