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Fundamentals of the nonlinear theory of photorefractive subharmonics
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We formulate the fundamentals of the nonlinear theory of low-frequency space-charge waves in semi-
insulating photorefractive crystals. This includes an analysis of dispersion relations for the waves, and of their
parametric excitation by a running light pattern, a description of various stationary &ptitsand unsplit
subharmonicsbeyond the threshold of the parametric instability, and a study of the stability of those nonlinear
steady states against small perturbations. Nonlinear eigenfrequency and mutual frequency shifts for strong
waves and renormalization of the coupling coefficients for weak waves are important elements of the theory.
An investigation of the stability of the subharmonics also incorporates their phase relations as well as certain
special features of space-charge waves. One of the consequences of the theory is the modulational instability
of the main subharmonic, characterized by doubling of the period of the primary light pattern. Finally we
discuss further development and applications of the thé&3063-651X97)10604-3

PACS numbdrs): 42.40.Pa, 42.65.Hw, 42.70.Nq

[. INTRODUCTION the dependence of the nonlinear coupling coefficients on the
wave vector, etc. A universal description of the above-
The problem of how to describe the equilibrium state of athreshold behavior of nonlinear waves is hardly possible.
physical system governed by nonlinear evolutional equations In the present paper we are dealing with the above-
is of a very general nature. It arises in hydrodynaniiig&],  threshold regimes and their stability as applied to space-
plasma physicg3,4], nonlinear opticg5,6], and in many charge waves in photosensitive dielectrics. Although such
other fields of physics. An analysis of the stability of the waves were predicted more than 20 years gd#, real in-
stationary solutions often reveals the details of the transitionerest in them arose quite recently during studies of the non-
from a deterministi¢lamina behavior of a physical system linear photorefractive phenomena in crystals of the sillenite
to a chaotic(turbulen} one with increasing strength of the family, Bi;,SiOyg, Bi,TiO5g, and Bi,GeOyy.

nonlinearity[1,7]. A brief history of space-charge waves is as follows. It was
Investigations of the so-called weakly nonlinear wave in-found in 1988 11] that the space-charge fielti(x) created
teractions figure prominently in the above subje4i8,9.  in a Bi;,SiO, crystal by a moving light pattern under cer-

The existence of a small physical parameter—the ratio of théain conditions looses the periodicity of the external expo-

dampingy;; of the wave with wave vectd to its frequency, —sure. The Fourier spectrum &(x), apart from the funda-
wi—enables one to advance greatly in the description anghental spatial frequency of the interference pattérnand

understanding of nonlinear wave phenomena even withouhe higher harmonicsi, 3K, ... , also included the frac-

numerical simulations, if the wave amplitudes are Sum',tional frequencie/2, K/3, andK/4 (spatial subharmon-

ciently small. The simple idea that the waves remain quasiieq) 'Fyrther experiments revealed that the subharmonics can
monocromatic and quasiplane, so that the concept of resgysq e excited in other crystals of the sillenite fanjil—
nance(linear or nonlinearstill holds true, lies at the heart of 14]. Furthermore it has been shown that doubling and tri-
such studies. _ _ _ pling of the spatial period are also possible in the presence of
The scope of weakly nonlinear wave phenomena is quitg standing light pattern and an external ac @8, 15. Later
large: among them are dynamic effects with narrow wavet was detected that the first subharmonic may i, 17;

packets anq kinetic effec‘t‘s involving wide wave spectra. Thefnstead of a single spatial frequentZyZ, two frequencies
latter case is known as “weak wave turbulencet]. Sub- -~ a - . .
stantial progress in the field of weakly nonlinear wave pheX1 @ndk; neark/2 were observed in the Fourier spectrum;
nomena has been achieved in plasma phy€itand in fer-  their sum was equal ts. The splitting can be parall¢lon-
romagnetisni9]. gitudina) or perpendiculartransversgto K. It should be
The experience of numerous studies shows that the behawuoted that the Fourier spectrum of the space-charge field in
ior of waves above the threshold of their nonlinear excitatiorphotorefractive crystals is easily visualized on a screen by
is highly sensitive to the special features of the physical sysmeans of light diffraction.
tem: to the method of pumping, to the dispersion lagy to Theoretical investigations have shoWwb8—2(Q that the
generation of photorefractive subharmonisplit or unspli}
is due to the parametric instability against excitation of

*Electronic address: ringhofe@mail.rz.uni-osnabrueck.de weakly damped low-frequency space-charge waves, which
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exist in electrically biased sillenite crystals. Additional ex- subharmonic generation, it is restricted to the vicinity of the

periments[21,22 directly confirmed this conclusion. The pointK/2. In other words, the instability of the main subhar-
theory developed in Ref$§18—-2( enabled one to explain a monic may be qualified as a modulation one. One can expect
fair amount of experimental data on subharmonics, and alsthat a small spread of the wave vectors is able to stabilize
to give an elementary interpretation of some known photosuch an instability. In Sec. VI we summarize the results ob-
refractive phenomeni23—25. However, the basic theoreti- tained, and discuss further developments and applications of
cal results obtained up to now are valid in an approximatiorthe theory.

linear in the wave amplitudes. Such a linear theory describes

the threshold conditions for the parametric excitation of Il. BASIC RELATIONS

space-charge waves, and the rate of exponential gramih Our starting point is the following three-dimensional non-

crement of the instability of infinitely small wave ampli- linear equation for the potential of the space chagge
tudes. It cannot describe the final state of the waves beyond

the threshold. wo 1 15,
The aim of the present paper is to lay the foundation of Apy— . A‘P_E At woAe,+ To A%e
the nonlinear theory of parametrically excited space-charge ®
waves in sillenites. This includes an analysis of the stabili- e « e a 1 R
zation mechanism for the parametric instability, a calculation = ia =7, div(al Vo)
€€ hw €eg W Eo

of the amplitudes of the split and unsplit subharmonics, and
an investigation of stability of subharmonic regimes against 1 .
small perturbations. + —div(A ¢V o), (h)
; . . Eo
In Sec. Il we introduce nonlinear equations for the space-

charge field, and on the basis of these discuss the most injyhere A is the Laplace operator. This equation describes
portant properties of space-charge waves. This section alsharge transfer in a photorefractive sillenite crystal subject to
contains a summary of the main results of the linear theoryn external electric field, (parallel to thez axis), and to
of the parametric instability in sillenites. light with intensityl =1,+ 1, wherel, and 5l are the spa-

In Sec. Ill we consider one of the basic concepts of theja|ly homogeneous and spatially oscillating parts! pfre-
nonlinear theory, the nonlinear frequency shift for spacexpectively. For a moving light pattern, created by a pair of

charge waves. We distinguish two types of nonlinear shiftsjaser peams detuned with a frequerieywe have
namely, the eigenshiifw,,, owing to the action of wave 1

on itself, and the mutual shif6w,,, due to the effect of Sl=mlycog Kz—Qt), 2

wave 2 on wave 1. It is remarkable that the contributions to h is th trast of the interf t 0
dwq, coming from the forced oscillations with spatial fre- wherem IS the contrast of the interierence pattern €

LY EOR fundamental grating vector, equal to the difference of the
guenciesk; +k, and k;—k, partly compensate for each ump wave vectors.

other, anfi thzit this partial compensation is preserved even #] In Eq. (1) we have used the following notatioe:is the
the limit k,—k;. The latter is connected with the long-range elementary chargese, is the dielectric susceptibilityq is
electrostatic interaction. We apply the general expressionghe absorption coefficient,w is the energy of a light quan-
for dw,, to the cases of longitudinal and transverse split oftum, wo=aly /N w is a characteristic frequenci, is the
the main subharmoni/2. effective trap concentratioty= u7E, is the drift length in

In Sec. IV we find and investigate the stationary solutionshe external fieldu is the mobility of the photoelectrons;,
for split and unsplit subharmonics beyond the threshold ofneir Jifetime, I5= VkgT /€ is the diffusion lengthkg is
parametric instability. These solutions give the amplitudeshe Boltzmann constantT is the absolute temperature,
and phases of the _eXC|ted waves, which are important for thli:EOEo/eNt is the characteristic screening length, and the
subsequent analysis of stability of the nonlinear regimes. Wepscriptsz andt are the differentiation with respect to the
show that the nonlinear solutions can be simply i”terprete%ngitudinal coordinate and the time, respectively.
in terms of the nonlinear frequency shifts. The difference of 1o procedure of deriving Eq1) and the region of its
the nonlinear shiftdw,; anddw,, in the limitk,—k;, leads,  applicability were described in detail in our earlier paper
in particular, to the result that an infinitely small splitting of [19]. Actually, Eq.(1) describes accurately the propagation,
the subharmoni&/2 is accompanied by a finite change of damping, parametric excitation, and nonlinear interaction of
the energy of the space-charge field. space-charge waves in crystals with sufficiently large drift

In Sec. V we show that the split as well as unsplit sub-length for moderate light intensity.
harmonics do more than cause frequency shifts for weak The first two terms on the left-hand side of E4) de-
waves; they also considerably renormalize the coupling coscribe dispersive and lossless wave propagation; if we re-
efficients of those weak waves with the pump, i.e., with thestrict ~ourselves to these terms and putp
running light pattern. We find explicit expressions for theoceprIZ)Z—iwgt—ygt), we obtain the dispersion law
renormalized coupling coefficients and discuss them.

In the same Sec. V we use the results of Secs. Il and IV _eg 1
to find the region of instability of the main subharmonic Wk= K.
K/2 against the excitation of small three-dimensional pertur-
bations. Our analysis shows that such an instability regionvhereg,= aly/% w is the generation rate of photoelectrons.
always exists. However, not far beyond the threshold of theSuch a dependence of the frequency on the wave vector is

()

eegEq Kz
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highly unusual for waves. Actually, E€B) is valid only in a % 290k
. . - 2 — —

restricted region of th& space. e

The last three terms on the left-hand side of Bg.char- _ vl .
acterize the wave damping, IS/Z 1(

0 »~ L Z
1 e kgT K2
= 0o| T = t——z (4)
7= 9o Nt ‘eeourEZk? “eeoE3 ks \T(}
1

which is clearly positive and even ik and Eo. The first, FIG. 1. Geometrical scheme for the decay of the fundamental

second, and third terms in the brackets are connected Witfyating for O >4w, . The vertical solid lines stand for the decay
recombination, drift, and diffusion of photoelectrons, respecsurface; the dotted lines indicate the boundary of the stability re-
tively. Only the last(diffusion) term depends on the trans- gion. sk is the width of the decay surfa¢see the last paragraph of
verse component of the wave vectlaj; this term grows Sec. I). Itis only indicated for one sheet of the decay surface.
with k2.

If the material parameters meet the inequality K —
eN,u 7> €€, (Which is valid for the sillenites the condition (k=7 (1xV1=4e),
for the weakness of the wave damping<wg, is found to (7)
be fulfilled for a large region of applied fields and wave Eh:_ga,
vectors[18,19. Without an applied field the weakly damped
space-charge waves are absent. wheree is the useful dimensionless parameter
The three terms on the right-hand side of EL).describe
linear excitation of the space-charge field by a moving light wg € alg 1
pattern, parametric excitation of the waves, and the effects of =0 "= 7w EKQ (8)
the nonlinear wave interaction, respectively. If we discard €€o 0

the last two terms, accept Eq2) for &I, and put
o= prexpKz—iQt)+ c.c., for the amplitude of the electro-
static potentiakpkx we obtain

We see that Eqg7) can be fulfilled only fore<1/4, that is,
for a frequencyQ)=4wy . For O>4wy the decay surface
consists of a pair of planes perpendicular to thaxis; see

Fig. 1. The corresponding wave vectdirlsand IZZ belong to
o= —1i . (5) different planes and have opposite transverse projections.
2K Q—wg+iy For Q=4w (i.e., for e=7%) the two planes coincide; the

_ _ _ ~ special casék; =k,=K/2 corresponds here to the first sub-
For (1= wy this formula describes nothing else than the lin-parmonic. For) <4wy, the decay is forbidden.

ear resonant excitation of an oscillator with eigenfrequency T find the threshold and increment of the decay instabil-

wy and dampingyy .* Far from resonancé)—wx| >,  ity, one has to insert into Eql) the ansatz
the dampingyx may be neglected.

Spatial subharmonics, split as well as unsplit, are the re-,— ,, gi(kz-Q0 1 ei(lzl-iwk'lnﬂpz ek x—oih 4 cc.
sult of the instability of the moving fundamental grating with 9
respect to the excitation of weakly damped space-charge
waves. The wave vectors of the excited waves meet the foland to isolate next the terms with spatial frequen&gsnd
lowing well-known conditions of spatially temporgpara-
metric) resonance:

IZQ. As a result, one obtains the following coupled system of
linear equations for the slowly varying amplitudes and

*
Q wi, T o, ¥z
(6) d .
. TR ¢1=iV103,
K= k1+ k2
(10
They are also called decay conditidds9], being associated (%+ 'ylgz) o5 =—iV5 .

with the transformation of an oscillation quantun( into a

wave pair 1 and 24,9]. In the general case, Eqﬁ) yield 2  The expression for the coupling coefficieds andV, is the
surface ink space, the decay surface. Any given vedter  same up to an interchange of the indices 1 and 2, and
related to this surface is coupled with another ve&tgrand

vice versa. For our particular dispersion 1d8), the decay _ K m - - C 2 &
surface is given by the equations Kk, 2 © Ki-ko—ex| kikate k; ko) | (1)

Here ex = —iK o Ey is the dimensionless amplitude of the
The so-called resonant enhancement of the photorefractive respace-charge field for the fundamental grating. In the decay
spons€23]. region, &£<1, we find from Eq.(5) that
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m = The relationg14)—(16) are obtained for a pair of waves 1
&K= 1 o (120 and 2 which meet the resonance conditi®isexactly. Each
resonance has, however, a finite width. For this reason, as a
Sincee is real, the coupling constanté, , are also real. result of the instability, waves are also excited with wave

Each coupling constant consists of several contributionsVectors close to the decay surface; see Fig. 1. The physical
The first term in square brackets in Eg1) comes from the Width of the decay surface can be estimated as
second term of the right-hand side of the starting equatiorPk~K I'c/wg<k. The larger the incremerify, the wider
(1), and the last two terms, proportional &, originate the region of the instability.
from the last term of Eq(1). In the important special case
e= %, when k;,=k,,=K/2 and k§=k§, from Eq. (11) we IIl. NONLINEAR FREQUENCY SHIFTS

obtain The concept of the nonlinear frequency shift forms the

Q basis of the nonlinear theory of photorefractive subharmon-
V1=V2=m[m—1OeK+tar120(6eK—m)], ics. Nonlinear frequency shifts are determined by the eigen
(13) nonlinearity of the medium. To describe them we neglect

wave damping and puél =0. Equation(1) takes then the

where 4 is the angle between the vectdes, and thez axis, form

see Fig. 1. Terms of different origifproportional tom and wo 1 R
proportional toek) are clearly seen in Eq13). Obviously a A( P |—<p) =N div(Ae Vo). a7
compensation of the first two terms in square brackets leads s 0

to a growth ofV, ; with increasingd, whereas a compensa- rrequency shifts may be of two types, eigenshifts and mutual
tion of the last two terms results in an angular decrease of thgas The eigenshift is created by the wave itself. The eigen-

coupling coefficients/; ,. In the framework of the present ¢pitt of the frequency of the wave with frequenay_ with
approximation, linear inp; ,, the amplitudeey is given by !

Eq. (12); for e =1 it gives 6ex=m, i.e., the total compensa- the_ wave vectok, will be denoted bydw,,. The frequency
tion of the last two terms in Eq13). As we shall see below, Shift of wave 1 can also be caused by other waves. The
Eq. (10) also remains valid beyond the framework of the change of the frequencyy by a wave with wave vector
theory linear in the amplitudes; ,, whereas the expression |22 will be called 6w 5.

for ex alters because of the coupling of the fundamental To calculate the eigenshifiw;;, we seek the potential,
grating with the excited waves. Note that the contributions top, in the form

ek allowing for nonresonant excitation of the higher spatial

harmonics, K, 3K, ... remain negligible foe<1/4. =g, X0 o g2ikix-oihyce  (18)
Putting ¢4, ¢3 *exp(’t) in Eq. (10), for the increment of
the instability(characteristic exponentve obtain where ¢, , are slowly varying amplitudes. The second term

in Eq. (18) allows for the forced oscillation with wave vector
F=— 3 (v, tr)+ VA( Vi, Vi)t I's, (14 2k, and frequency @y . Inserting Eq(18) into Eq.(17), and
separating the spatial harmonics, we find

wherel“ézvlv’z‘ . Since the producY,V3 is positive, the

incrementl” is real. If the difference of the dampingﬁzly2 is deg 10 wlkf

relatively — small,  [yg,— &, <¥%,,~v. Wwe have dt | kg, E, 2%

I'=T"g— v; this assumption is often justified. (19
SinceV; and ey are given by Eqs(11) and(12), a de- . ki 5

crease of the transverse component of the wave véetpral 2= m 1

in value for waves 1 and)2favors the instability. Putting
k;=(ky2),=0, we find the following formula for the We have neglected the temporal derivativepgf taking into

threshold contrast: account the smallness of the correctiém,; compared to
w;= w, . Insertinge, into the equation fop;, we obtain the
mm=1_8 / yklykz_ (15) equation fore, in the formde, /dt= —idw1¢4 With
€ wklwkz N
Swy; 5 leyf? 2
The right-hand side of this expression is, of course, a func- w1 T 3 (1+tarrd), (20

tion of the frequency). The minimum ofmy, takes place at

Q=4 wy (and therefore at =), which corresponds to the \yhereg, = —iK,¢,E; " is the normalized amplitude of the

excitation of the first subharmoni&/2. Here we have space-charge field for wave 1, amdis the angle between

(16) wave_vectorlz_l_an(_j thez gxis. Wg see that the eigenshift
dw14 is a positive increasing function &f, .

For <4 wy the decay conditiong6) are no longer ful- To find the mutual shiftw,, which characterizes the
filled, whereas increasing in comparison with 4y results ~ €ffect of wave 2 on wave 1, one has to calculate the forced

in increasingmy, . oscillations with the sunk;+k, and the differencek; —k,

Mp=3 Yk/2! Wk/2-
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of the spatial frequencies. Correspondingly, the mutual shift 20
consists of two termsfw,,= Sw;,+ dw,. The general ex-
pressions fodw, are derived analogously to the calculation
of w41, and are given by

N _El' Ko(Ky+Kp)2(w1+ @) +k5(Ky - Ko +KF) w,

Ow,,= ——
12 Ky k2K3(Ky +Kz)?
y K3(Ky- K+ k) wp+ Ki(Ky - kot k) oy B
21
(k12T Koo (01 + w3) — Ky, w|22 1
(22) g
So- ky-Ka(Ky—Kp)2(w1— w5) + k3(ki—Ky - kp) g
w 2: = =
' K1k? K3(Ky—Kp)? A
xki(ﬁl'Rz_kg)wl_kg(ﬁl'ﬁz_ki)wz |é |2
2 .
(K1z=k2p) (01— wp— wi ) 05 -

Here and in the rest of Sec. Ill we use the abbreviation
w1 2= WK, , 8S long as it does not lead to misunderstanding.
It is easy to see that the total nonlinear shift of the fre-
guency,dw1, is given by the sum of all possible elementary T P T
(eigen and mutualshifts. 00 05 0 15 20 25 30
Two important properties of the contributiode;, stem

from Egs.(21): (i) In the limit k,—k; the following relation
holds true:dw,,=2dw1,. (ii) The contributiondwy, has no

-1.0 | ]

Ratio, r

FIG. 2. Dependence of the parametéfs on the ratio of the

limit for k,—k,, and, for |k,—k;| <k, we have wave vectors .
5wIz:_2|é |2(a~121)2 22 f~(1)=—-1. Away from the extremum the functiofi" (r)
2 q?kiz ' decreases monotonically to 1, wherefag(r) changes its

sign and becomes positive; see Fig. 2. kprk, we find for
where q=k; —k,. Therefore the shiftdw;, is negative for the total mutual shift

wave vectorslzl and IZz close to each other, and it depends

strongly on the angle between the vectqrandk;. dwip
The first property is common for nonlinear media in w1

which the four-wave interactions are due to the quadratic

nonlinearity. The nonlinear frequency shifts for surface| et us consider now a pair of two-dimensional configura-

waves[26] and spin wave$8] may serve as examples. The tions(a) and(b), shown in Figs. &) and 3b). In these cases

second property is specific for space-charge waves becaugg havek,,=k,,, i.e., the unperturbed frequencies of waves

for most types of waves the contributidin,, tends to zero 1 and 2 are the same. For small propagation angles,

for k;—k,. We stress that this peculiarity is due to the long-tarf#<1, we obtain, from Eqgs(22),

range electrostatic interaction; it is not connected with the

approximations used. Swip
Below we consider some important special cases. In the

4. 5
=3 leg]? . (25

10 .
=7 leo*(1~ starfo), (263

one-dimensional casek{,) =0, the expressions fofw;, “1
are simplified considerably:
5(1)12 10 - 8
S0 =7 l&f’(1- ttarfo), (26b)
W12 D¢+ Ky w; 3
=2|e,|* | =/, (23
1 k2

respectively, for the configuratiorig) and(b). The contribu-

where tion dw4, is here negligible. The case of large angeis of
r2+3r+1 little interest because of the large damping of the waves.
fi(r)zfi(rfl)zm. (24 We note that a correctiodw,, to the eigenfrequency

w;= wi, can be given not only by an eigenmode 2 but also

For r=1 the functionsf*(r) and f (r) have a maximum by a forced oscillation with spatial frequenEy and tempo-
and a minimum, respectively, withf*(1)=3 and ral frequencyw,# w,. In particular, the fundamental grat-
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FIG. 3. Basic two-dimensional configurations

Z  for the mutual frequency shift.

(@ (b)

ing, induced by a running light pattern, may play the role ofrenormalization of the frequency. We emphasize that this
such an oscillation. In similar cases, the frequengyn Eqs.  renormalization comes from the nonlinear correction to
(21) is just the frequency of forced oscillations. ex(eks) in Eqg. (28).

Note finally that the frequency shifts introduced above are Writing e ,= |exp|?exp(®), from Eq. (29), we easily
very convenient to use. They account for certain nonlineabbtain
contributions of the second-order perturbation theory by
means of a simple renormalization of the coefficients of the 2_1 I —a
linear theory. Furthermore, it is know27,2§ that the non- |€xial = 5(3A+ ym*—mip),

linear frequency shifts play an important role in the stabili- (30)
zation of the parametric instability. . Mih
SII'ICI)ZF s
IV. STATIONARY SOLUTIONS FOR SUBHARMONICS
A. Unsplit subharmonic K/2 where the threshold value of the contrag is given by Eq.
Let us put the following into in Eq(l): (16), and
— ei(Kzfﬂt)_i_ e i/2(Kzfm)+C.C' 2 S
b=k PK/2 (27) A= K/2:1_48. (31)

We suppose that the amplituds;,, is a finite quantity “Ki2

and the frequency) is near its limiting value &, . Sepa- ] ] _
rating the spatial frequencigé/2 andK and introducing a  The dimensionless parametar[a stand-alone symbol; not

dimensionless amplitude of the space-charge fieldthe Laplace operator as in EQ)] is simply the normalized

e = —ik<PkEc§1, with k equal toK or K/2, we obtain the Inear detunlng,.whlch is small against 1. This solution for

following coupled system of nonlinear equations: the subharmonicK/2 holds true only above threshpld,
m>my,. The value |eg,,| 2 follows a square-root law with

increasing contrasin, linearly with increasing normalized

i
(V2™ 1 6kr2) €k12= ~ 5 wk2(M— 10 ex) €Kz, detuningA. For A~1, when |eg,] becomes comparable
(28)  with 1, our approximation loses its applicability. Near
m 1 threshold the phasé is about«/2, and far away from
eKzg ~3 e,2<,2 , thresholdm>my,, it is close to zero. As we shall see in Sec.

VI, knowledge of the phas® is necessary for analyzing the

where ;= 0.5 Q — wy, is the linear detuning. The second Stability of the steady state. _

equation describes the effect of the subharmonic on the fun- Within the calculation procedure used we may not require

damental grating. smallness of|ex,,] and of the correction t@x, given by
Inserting the second of Eq&28) into the first one, we E- (28), in comparison with |ec| . The relatively large

obtain the following remarkable equation for the amplitudevalue of |ex,;| is connected with the fact that the subhar-
monic is caused by a resonant parametric process, whereas

the fundamental grating is a forced oscillation far away from
) 5. ,o .M . the linear resonancé) — wx=3 wg> yk .
ks Yk~ i kit 3i w2 €kl 9) =i 3 @K €k /2 In accordance with Eq$28) and(31) the excitation of the
(29) subharmonic gives rise to an imaginary part of the amplitude

of the fundamental gratingy , that is, to a spatial shift be-
This shows clearly the mechanism of stabilization of thetween the fundamental grating and the interference light pat-
parametric instability for increasing subharmonic amplitudetern. As is known, such a shift is of importance for the op-
namely the mismatch of the parametric resonance owing ttical photorefractive phenomea9]. In particular, it should
the frequency shif6w,1; see Eq(20). Actually, Eq.(29) is  result in an energy exchange between the pump beams which
the threshold condition for the instability, allowing for the form the running light pattern.

€x/2-
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FIG. 4. Geometrical schemes clarifying the
longitudinally (a) and transversallyb) split sub-
z harmonics. Only the vectotls, andk, and their
multiples are indicated by arrows. The arrows of
K/2 andK are omitted, but their lengths are indi-
cated.

¥
K

(@ (b)

Above we took into consideration only the spatial fre- monic corresponds to a periodic solution for the space-
qguencieK, K/2, and the corresponding eigenshitb,, for ~ charge field(with a period 47/K); any infinitely small split
the space-charge wave with wave vedtg=K/2. Including  breaks this periodicity.
into the theory the mutual shift for the subharmoidie,, In the following calculations we restrict ourselves to small
caused by the fundamental gratifige., the terms with the  splits, assuming thaf2k,; ,— K| <K and |2w, ,~ Q| <.
spatial frequency B/2) would result in corrections quadratic Furthermore, to avoid clumsy expressions, we consider only
in m. One can show that these corrections remain small up t¢he types of splits simplest in symmetry, namely longitudinal
m=1. Likewise one can understand that nonlinear correcand transverse splits; see Fig. 4.
tions to the dampingy/, would lead to additional terms in The longitudinal splifsee Fig. 4a)] corresponds to a one-
Egs.(29) and(30) which are of order?2 /w3, . dimensional problem. The wave vectdks, may here be

presented in the form

B. Split subharmonics

K
For one and the same value of the frequeficyve can Kio=5(1%x). (33

find (in addition to the above solution for the main subhar-
monicK/2) a whole family of solutions for split subharmon- The small dimensionless parametercharacterizes the de-
ics. A split subharmonic consists of a pair of waves withgree of the split. At first we assume the linear detunings

wave vectork, andk, and frequencies; and w,, the sum 912N Eq. (32) to be the same, which corresponds to equal
T . intensities of the waves 1 and 2. In this case,
of which isK and (), respectively. In general, the frequen-

cies w, , are different from the eigenfrequencie;sglv2 be- 81 2= il A— K2) (34)
cause of the nonlinear shifts. The equations for the wave ’
amplitudesy, and ¢,, replacing Eq(29), are whereA is given again by Eq31). For the overall nonlinear
frequency shiftséw,, dw, we obtain, using the results of
[y1+i(6w,—81)]e1=1V1¢3, Sec. llI,
(32)
. . WK/2 2 2
[y2—i(8wo— 82)]¢3 =—1V3 ¢1. 5“’1,2:T(5|el,2| +4lexq?), (35

Here y, .= ¢ . are the dampings of the waves, , the cou- where the first term corresponds to the eigenshift and the
pling éoeffié’izents defined by Egs.(11) énd 12 second one to the mutua[l shift. Th((a d)a]lmpimgsz and the

e o . d ’ ' coupling constantsV,, [see Egq. (13)] are yx, and
d12= w12~ W, , the linear detunings, andw, , the overall " wk 213, respectively, in the leading approximation in

nonlinear frequency shifts of waves 1 and 2 including the, Taking into account Eq¢34) and(35), from Eq.(32) we

appropriate eigenshifts and mutual contributions. obtain
Equations(32) furnish an opportunity to clarify the basic
difference between split and unsplit subharmonics. For a |e1,z|2=%(A—K2+ %m)- (36)

split subharmonic, apart from the eigenshifts related to the

spatial frequenciesk and 222, there is a mutual shift, cor- The caseA = «x? corresponds to the excitation of waves ex-
responding to the spatial frequenciks;- k,. Because of the actly meeting the decay conditions, ,= Wk, As follows
difference between eigenshifts and mutual frequency shiftsrom Eq. (36), an increase of the split leads to a decrease of
(see Sec. I, the values oBw; 5 in EQs.(32) do nottend to  the intensities|el,j2.
Sw11=5 oy, |k 2 3 for E1’2—> K/2. In other words, even A more general solution foe; , may be obtained for un-
an infinitely small split of the subharmoni¢/2 gives a finite  equal(but not too differentlinear detuningss; and,. This
change of the energy of the space-charge field including thgives different intensities|e;|? and |e,|?. The sum of the
energy of the fundamental grating. intensities, |e,|?+ |e;|2, remains, however, the same as for
The absence of a continuous transition between the splthe cases;= 6,.
and unsplit subharmonics is connected with the breaking of The sum of the intensities of the split components,
the spatial symmetry by the splitting. The unsplit subhar- |e;|?+ |e,|?, does not tend to|ex,|> when the relative
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value of the splitx goes to zero. As follows from Eq§30) Apart from the above mechanism affecting the instability,
and(36), independent of the valugé we have there is one more important factor. It is related to another
5 5 1 ) nonlinear process, namely, to the conversion of two subhar-
(les|*+1e2]?) k0= 2l exral” - 37 monic wave quanta into a pair of weak wavks,. Clearly,

It is not difficult to find from Eqs.(32) that the sum of the thiS process meets again the decay conditi@sWe shall
phases of the parametric waveb= arg(e;e,), is again see below that this additional process results in renormaliza-

given by Eq.(30). tion of the coupling coefficient¥; , given by Eq.(11).

Let us now consider the symmetric transverse split; see In accordange with the aforgsalq we can represent the
Fig. 4b). In this case the linear detunings are the sameSMall perturbation of the potentiadl in the form
81,=wkp A. Since |ey| 2= |e,| 2, the nonlinear shifts
dw, and dw, are equal. To find them we use E@20) and
(26b). In the leading approximation ifi2, we obtain

Sp=a, ekix—ot) g elkeX—0) 4 oo (42)

where the frequencies, , are near the eigenvaluemlz1 5

Sy = 5wy |é1,2|2( —Ug2) (39) Below we de_rlve_equatlons for the amplltgtm_g,z to analyze
the renormalization both of the frequencies and of the cou-

Note that in this case there is no mutual contributions to thepling coefficients. For the sake of simplicity we restrict our-

overal nonlinear frequency shifiSw; and dw,. As follows  selves to the case of the main subharmdfie.

from Eq. (13), both coupling constantg; andV,, are, with

the same accuracy, equaltam wy/(1- 6%)/3. It is worth- A. Renormalization of the coupling coefficients

while to remind the reader that the effect of waves 1and 2on . _ _

the amplitudeey is equivalent to the already considered Figure 5 shows the wave vectdks, meeting the condi-

renormalization of the frequencies. For this reason, we usgion k; +k,=K. The difference gratings, created by the sub-

Eq. (12 of the linear theory foey . As for the wave damp- parmonicK/2 together with the waves 1 and 2, respectively,

ings 1, we choose them equal tg¢,,, neglecting a pos- . >
sible angular dependence. The point is that the first twohave the same spatial frequency,

terms(which do not depend o) usually dominate in Eq. R —RI2=RI2—K 42
(5) for v so that the dependencd 9) is relatively weak. =K 2: (42)
Taking this into account, from Eq32) we obtain This means that the gratings in question are responsible not

only for the contribution®w ™~ to the mutual frequency shifts
for waves 1 and ZAsee Sec. ), but also for the mutual
coupling of these waves. This coupling is different from the
Ene considered abouén Sec. Ill) because it is due to the

|é1,2|22%<1+i—é02)[3A+Jm%l—az)z—m?h].( )
39

The angular dependence under the radical describes an i
crease of the threshold of the instability owing to a decreas
of the coupling constants.

In the limit /— 0, we have

nite amplitude of the subharmonic.

To describe this additional coupling one should return to
Eq. (17), which incorporates all actual linear and nonlinear
terms. First of all, we calculate the amplitude of the forced

21240182 _2 2 oscillation of the potentiakp; . Taking into account Eq41),
(lexl*+1eal®) p=0=3l€x/al - (40) for q<K/2 we have a
In such a way, an infinitely small transverse split leads to a
decrease of the subharmonic energy of about 30%. The rea- (BPH2x)a18¢ )+ (07— 2K)83 exp
son for this conspicuous drop is the absence of the negative ®a~ 0%+ K2 '
contribution dw,, to the mutual frequency shift. For the
transverse split the sum of the phases of waves 1 and 2 ighere ¢ is again the angle between the vecthys and the

(43

identical to that for the previous cases. z axis (see Fig. 5 and k=2q,/K. The componentsk( ,),
are expressed in terms @&f using Egs(33). From Eq.(43)
V. ANALYSIS OF STABILITY one can see that the amplitugg depends strongly on the

One mechanism which may cause the instability of theorlentanon of the vectog.

subharmonics against small perturbations is quite clear. Thisl.tNgXt we Otétam Fg.e eiﬁatglrf}s fotf the f't?]WW vglzylng am-
is again the decay of the fundamental grating in accordancB'U9€Sa12, GESCrbIng Ihe difiraction of the subharmonic
with the resonance conditior6). The wave vectorEm re- K/2from the gratingg. Using Eq.(17) we obtain
fer here to a pair of weak waves, and the fundamental grating da 62+ x
is depleted by the coupling with the subharmonic. This _1:in/2_ ®; e

. . . . . dt 02+ 1 q ©K/2»
depletion alters, in particular, the relation between two dif-

ferent contributions to the coupling coefficients ,; see Eq. (44)
(11). The weak waves 1 and 2 experience nonlinear fre- da; . 0>— K .
quency shifts, caused mainly by the subharmonic. The shifts at '@k gz $a Sz

coming from the fundamental grating are of minor impor-
tance, for they are nearly the same for the strong and wealqserting Eq.(43) into Eqs.(44), we arrive at the following
space-charge waves with the wave vectors=K/2. matrix equation fora, andaj :
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WK /2
Vlzvzz — m(m_56§/2+3026i/2),
(47)
VY WK/2
Z Vlﬁvzz— m(m_ce§/2+302eﬁ/2),

wherec=5-6(1+ 6%/x%) 1. We see that the renormaliza-
tion results in a negative contribution to the parametein
the one-dimensional case this term changes the sign kbf
should be understood that keepif§ in the angular factor
(1+ 6?1 gives a more accurate result than necessary for
the region#=< |«| , where 6V, , is comparable withV, ,.
Outside this region we havéV, ,<V;,andV,,=V,,. Let
us also to note that the inequality= k<1, defining the re-
gion of strong renormalization, is equivalent to the condition
7 la,| = |g,] <1. The geometric meaning of this condition
is clear from Fig. 5. Finally, we remind the reader th%;z is
given by Eqs(30).

(b) B. Threshold equation

To find the threshold conditions for the instability of the
FIG. 5. Geometrical schemes for the renormalization of the couSubharmonidk/2, we have to use the following equations,
pling constants of the weak parametric waves 1 und 2 by ur(split incorporating all the above-considered causes for changing
and split(b) subharmonics. Thick vectors refer to strong waves. Thethe amplitudes of small perturbatiorss, ,:
sum of the wave vectorE1 and IZZ is equal to the fundamental

. > d ~
grating vectorK. gi T yati(dwy—a)|a= iVias,
(48)
d al - | 5(.0;2 | 6\/1 al d -
a a; - —i 5\/; | 5(02_1 a; . (45) &"’ 72—|(5w2— 52) a.; = _|V2al .

) . , , The parameters; ,= w; ,— wg, . are again the linear detun-
The diagonal matrix elements again describe the mutual fre- ’ ’ 1.2

quency shifts, whereas the off-diagonal elements give things. They can compensate for the nonlinear frequency shifts

nonlinear corrections to the coupling coefficients and and as such favor the instability. The overall nonlinear fre-
. . . uency shifts for the weak wavesdw, and dw,, are the
V% . The expressions fafw~ and 8V are most importantin 9o oY “1 w2

i iong= <1 where th i liaibl I mutual shifts induced by the subharmor@2. They are
e regiono= |« » Where they are not negligibly smail. given by the appropriate formulas of Sec. Ill. The renormal-
In this region we have ~

ized coupling coefficient¥, , are specified by Eq47).
Let us next put in Eqs(48) a;,a;xexp(l'"t), where
-1 I' 7 is an unknown real parameter. It can be considered as the
) imaginary part of the incremeiit, the real part of which is
(46)  zero. Actually, we use the general form of the solution for
a; », allowing for temporal oscillations at the threshold of
92) -1 the instability. Multiplying two algebraic equationgvhich

2

- - 2
8w 1= 6wy=—2wxpp |kl *| 1+ 2

OV1=6V,=—2 wy)p €2 1+7 result from Eqgs.(48)], and canceling the common factor

a,a3 , we obtain the following real threshold equation:

The expressions for the frequency shifts fully agree with Y2+ (80— 8)?=R+(1/2y)?, (49)
Eqg. (22). The correction to the coupling coefficients is gen-
erally complex; it depends not only ofe,,| 2 but also on  Where
the phaseb =arg(ex,)2. The largest correction takes place

in the one-dimensional case; with an increasing value of the dw=(bw,+ dwy)/2, R=Re&V,V3),
transverse component of the wave vectdrs, it decreases _ .
rapidly. 8=(81+8,)/2, 1=Im(VV3), (50

The renormalized coupling coefficients for waves 1 and 2
are obviouslyV; ,=V; ,+ 6V, ,, with V; , andeg given by  andy= yx,,. When deriving Eq(49) we again neglected the
Egs. (11) and (12), respectively. Fork<1 and §°<1 we  difference betweery; , and yy,,. A more detailed analysis
obtain shows that this difference leads to no real effect, but only to
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clumsy formulas. One can also show that the subharmonic isution to the nonlinear frequency shifto,. In the absence

unstable when the right-hand side of H49) exceeds the of such a contribution the subharmonic would be stable, be-

left-hand one. cause the positive contribution to the nonlinear frequency
We should now find explicit expressions for the param-shift, Sw;,=10 wg, |€xs| ?/3, would shift weak waves out

eters given by Eqs(50). Accepting representatiof83) for  of the parametric resonance for arbitrary values|ef,,| 2

the projections K; ), we obtain that the average linear de- and«. This fact may be checked by dropping the terms in the

tuning 6= w »(A — k?). The dimensionless parameterre-  threshold equation which stem from the difference gratings.

tains its former meaning, and is given by Egl). We have seen earligsee Egs(22) and (46)], that the
For the average nonlinear shifiw, we obtain, using Egs. difference contributions to the nonlinear frequency shifts and
(22, (264, (30), and(46), to the coupling constant¢; , decrease rapidly with increas-

ing angled between the wave vectors of the weak waves and
_ (51) the z axis. Therefore one can expect that the region of insta-
bility is narrow not only with respect tac but also with

. respect tod. In line with this assumption, from Eq$49)—
In deriving Eq.(51) we neglected the weak angular depen-(5) gne can obtain the following inequality restricting the

dence ofSw;, in comparison with the strong dependence of. o L ~ )
- . ) o instability region in theq plane:
dw1,; the latter is expressed by the negative contribution to

o ’ 5 K2
Sw=2wyplex/ 37212

Sw. This approximation is fully justified for the following 0> 2|exp*—3K*
21al|ys|is. Furthermore, using Eq80) and(47), we find, for P < W- (55
= |k|,
) 5 ) This condition, as well as inequalit$3), does not explicitly
R=12 ,+ w’ E lexsol 2(5+ K"—50 —A} contain the parametex=1—4¢. As follows from Eq.(55),
Kiz = Ki2 3 1=K K*+6° the maximum possible value of is not larger than
2 ot 0.17|ek/s| , which is much smaller than 1. This value corre-

sponds tok=0.55|ex,| . Note that the rati@/ « is nothing
else but the tangent of the angle of inclination of the vector

ﬁ against thez axis; see Fig. 5. The value of this inclination

- wﬁ/2| ekl 4 mz? ,

12 K? 6* i j i
_2:w§/2| eK’2|4T022' (52) angle bec?mgs larger with decreasmgbut .|t doe.s.not ex-
4¥kr2 (k ) ceed 11.3°. Figure 6 shows the region of instability for sev-
o , eral representative values 9&y,| .
As follows from Egs.(52), the last contribution t& (which Note finally that terms of higher order i@ (which are
is small against th2e first two terms férs |«| ) compensates ot important in the above considered angular regién,
for the term (/2y)“ in the threshold equatio(®#9). < |«| ) act stabilizingly on the weak waves propagating un-
der large anglesf > |«| . Therefore the above region of
C. Instability of the subharmonic K/2 instability is unique for |ey,,| 2<1.
We begin our analysis of the threshold equation with the
one-dimensional case. Puttiy=0 in Egs.(51) and (52), VI. DISCUSSION
from bElq- (49) we obtain the following simple condition for  \ya have considered in detail the main elements of the
instability,

nonlinear theory of space-charge waves. This theory enables
(53) one to describe the parametric excitation of these waves by a
running light pattern, to find various stationary subharmonic
This condition shows that the subharmoié2 is always regimes beyond the threshold of the instability, and to ana-
unstable. The instability is of the modulational type, becausdy2€ the stability of these nonlinear regimes against small
it results in the excitation of waves with the wave vectorsPerturbations. One of the basic elements of the theory are the
near toK/2. The smaller the amplitude of the subharmonic,”on“”ear eigenshift and mutual frequency shift. These shifts
the narrower the region of instability. strongly affect the above-threshold behavior of the paramet-
Let us compare the limiting value of the parameiér  iC Waves, bringing them in or removing them from reso-
corresponding to the instabilit)c,2=2 lewss| 2/3, with the nance. In partlcular, the amplltudes of the Sp|l't and ungpllt
value k2= A meeting the decay condition). Using Eq subharmonics are determined by the appropriate nonlinear
0_ . .

K*<3 |expl?.

. frequency shifts. The analysis of the stability of the station-
(30), we find ; . .
ary solutions involves not only the frequency shifts of weak
2 [ — waves but also other elements of the theory: the renormal-
K_'2: E( + M) (54)  ization of the coupling coefficients and the feedback of the
Ko O 3A subharmonics on the pump. Here not only the intensities of

) ) ) N ) the parametrically excited waves but also their phases are of
We see that the relative width of the instability region be-importance. Some important details of the analysis are con-
comes smaller with increasing=1—4e, and tends to 2/5.  pected with the peculiar features of the system considered, in
Itis worthy of note that the instability of the subharmonic particular with the unusual dispersion law of the space-
K/2 originates from the difference gratings with wave vec-charge waves and with the presence of the anomalously large
tors ky ,—K/2, and more precisely from the negative contri- “difference” contributions to the frequency shifts.



6082 B. I. STURMAN et al. 55

0.08 . ; . . ,

0.06 | 3 3 4

0.04 -

0.02 - |

0.00 FIG. 6. Boundary of the instability region of
L ] the subharmonicK/2 for several values of
002 | 4 le| . Curves 1, 2, and 3 correspond to
lexo] 2=0.1, 0.2, and 0.4, respectively.

2k, /K

004 | -

-0.06 |~ -

20.08 L 1 L . 1 L
-0.4 -02 0.0 0.2 04

x=2k, /K- 1

Under the same external conditioftee same fundamen- described not dynamically but statistical§].

tal grating vectoiK,, frequency(), contrastm, and intensity The possibilities of a numerical simulation of the initial
lo) the nonlinear equations admit a whole family of station-dynamic equations for the space-charge field are, probably,
ary solutions for split and unsplit subharmonics. These solutestricted to the one-dimensional case. It would be expedient
tions differ considerably in the energy of the space-chargd® verify numerically the fact of the modulation instability of
field. We have shown that the main subharmoKif2 is the main sumharmonik/2 in this case, and to find the final
modulationally unstable. This gives some hope that the inwave distribution beyond the threshold of the parametric in-
stability may be stopped by a small broadening of the Foustability.
rier spectrum of the excited waves. For future theoretical studies of the subharmonics careful
An exhaustive analysis of stability of various nonlinear €xperiments are of upmost importance. Unfortunately, the
regimes is beyond the scope of our paper, although such Rajority of experiments performed up to now has only dem-
study should not present fundamental difficulties. In particuOnstrated one or another instability of the fundamental grat-
lar, it is easy to understand that the main modification of thdng- A detailed experimental study of the subharmonics re-
theory necessary for analyzing the stability of the split subuires, first of all, a high homogeneity of the pump intensity
harmonics is taking into account not only one spatial gratindo @nd of the external field,. An inhomogeneity of these
a for each pair of weak waves, but two gratingﬁi, and Parameters results in a spatial modulation of the frequency

- Fi The struct f Eq48 ins th wg and, therefore, in the coexistence of different nonlinear
iqnz'tr?iiecalsgé ). The structure of E48) remains the same regimes in different parts of the sample. Under these circum-

A h bh . idered in Sec. IV. th stances optical measurements can only inform about average
mong the subharmonics considered in Sec. 1V, the tran properties of the parametrically excited space-charge waves.
versally split one has the greatest chance to be stable. T

o . A e e hope that the development of a nonlinear theory of
point is that the negative contributiodw,, is negligibly  gpace-charge waves and the performance of careful experi-

small for any weak wave pair, with the wave vectors near Gnents will furnish a better understanding of space-charge
the primary onex; andk,; see Fig. 4o). The positive fre-  wave instabilities and the effect of the generation of subhar-
quency shiftdw;, is not small here, and it represents anmonics on the photorefractive properties of sillenites.
important stabilizing factor for the instability.
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